С какой целью делают расчет фундаментов по несущей способности основания

Несущая способность фундаментов

На данной странице приведена информация по вопросу одного из наших клиентов по поводу особенностей расчета несущей способности фундамента:

«Здравствуйте! Полтора года назад мною был залит малозаглубленный ленточный фундамент (ширина ленты — 25 см, глубина — 50 см), на котором планировалось строить одноэтажный дом из бревен 7*7 м. Но в связи с финансовыми обстоятельствами реализация проекта была отложена, и вернулся к нему я только сейчас. Теперь хочу строить дом из кирпича, но сомневаюсь, выдержит ли уже существующий фундамент такое здание. На участке грунт представлен плотной суглинистой почвой. Не произойдет ли усадка фундамента и последующая деформация стен? Помогите пожалуйста с расчетами массы дома и несущей способности фундамента»

Из данной статьи вы узнаете, как правильно рассчитать несущую способность ленточных и свайных фундаментов, и какое оборудование для этого необходимо. Мы продемонстрируем технологию расчетов разных фундаментов на примере конкретного строения (кирпичного дома 7*7 м).

Используемые приборы

Решение возводить здание на уже существующем основании, которое простояло без нагрузки больше года, должно подкрепляться техническим обследованием железобетонного фундамента на предмет возникновения дефектов и определением его несущей способности.

Техническое обследование фундамента здания состоит из нескольких этапов, которые выполняются в следующей последовательности:

  • Специалисты изучают проект фундамента и существующую исполнительную документацию по его возведению. Также анализируется геодезическая документация по состоянию грунтов на строительной площадке;
  • Производится визуальный осмотр поверхностных элементов фундамента с целью выявления видимых дефектов;
  • Производится инструментальное обследование фундамента — определяется прочность конструкции с помощью приборов неразрушающего (ультразвуковой, склерометрический анализ) и разрушающего действия, после чего дается оценка исправности и возможности дальнейшей эксплуатации фундамента;
  • Собираются все нагрузки на фундамент, в число которых входит проектная масса здания, вес снегового покрова, давления ветра и полезная нагрузка на сооружение, которое планируется возводить на уже существующем фундаменте;
  • Нагрузки на фундамент сопоставляются с силой сопротивления грунта строительной площадке, на основе чего делается вывод о достаточности несущей способности либо необходимости усиления фундамента.

Для определения геометрических параметров (слоя защитного бетона, расположения арматуры, ее класса и диаметра) железобетонных фундаментов используются приборы ультразвукового контроля по типу ИДС-1, ИЗС-10Ц , Пульсар 2.1 которые выполняют неразрушающий анализ конструкции. Наличие микротрещин в толще бетона определяется склерометром ИПС-МГ4.03.

Оценка прочностных характеристик фундамента выполняется с использованием прибора разрушающего контроля — ОНИКС-ОС, который функционирует по методу отрыва со скалыванием, фиксируя усилие, необходимое для деформации бетона.

Как определяется несущая способность фундаментов

Несущая способность фундамента — показатель, свидетельствующий о нагрузках, которые сможет выдерживать основание дома в конкретных грунтовых условиях.

Определение свойств почвы требует проведения геодезического исследования грунтов на строительной площадке, в процессе которого анализируются следующие характеристики:

  • Тип грунта;
  • Насыщенность почвы влагой и химический состав грунтовых вод;
  • Уровень промерзания грунта;
  • Коэффициент пористости и плотность породы.

Исходя из данных величин, определяемых вследствие лабораторного анализа взятых на участке проб почвы, выявляется сила сопротивления грунта — величина нагрузки, которую сможет выдерживать 1 см 2 почвы.

Существуют нормативные таблицы сопротивления разных видов грунта, однако проведение геодезических изысканий на объекте крайне желательно, поскольку один и тот самый вид почвы, обладающий разной влажностью и плотностью, будет иметь отличающиеся характеристики сопротивления.

Следующим этапом расчет является сбор нагрузок, которые фундамент будет испытывать в процессе эксплуатации. Данные нагрузки состоят из следующих факторов:

  • Масса здания ;
  • Нагрузки от снегового покрова;
  • Нагрузки от давления ветра;
  • Полезные эксплуатационные нагрузки.

Чтобы рассчитать массу здания необходимо определить вес составляющих его конструкции — стен, кровли и перекрытий. Сделать это можно умножив габаритные характеристики здания на удельный вес одного м 2 стройматериалов.

Атмосферные нагрузки добавляются к рассчитанной массе здания. Нормативные снеговые нагрузки на 1 м 2 горизонтальной плоскости здания указаны в действующих строительных нормативах.

Для определения ветровых нагрузок нормативное давление ветра необходимо умножить на площадь одной стороны здания (высота от нулевого уровня до конька крыши).

К сумме полученных результатов необходимо добавить полезные нагрузки, величина которых для жилых зданий составляет 100 кг на м 2 половых и междуэтажных перекрытий.

Расчёт несущей способности фундамента

Определение несущей способности оснований осуществляется на основе проектной площади опирания фундамента на грунт, сопротивления почвы и испытываемых фундаментом нагрузок, однако особенности и порядок расчетов для разных видов фундаментов будет отличаться.

Читать еще:  Как правильно сделать разметку фундамента для дома своими руками?

Ленточного железобетонного

Определение несущей способности ленточного фундамента осуществляется через расчет фактической опорной площади, которой должна обладать фундаментная лента. Делается это по формуле: S>Yn*F/Yc*Ro, в которой:

  • S — опорная площадь фундамента (см2);
  • F — совокупная нагрузка на фундамент дома;
  • Yn — коэф. надежности (1.2);
  • Yc — коэф. работы фундамента в грунте;
  • Ro — расчетное сопротивление грунта.

Величина Yc представлена в нижеприведенной таблице:

Для примера произведем расчет фундамента по несущей способности под кирпичный дом7*7 м (длина ленты с учетом внутренней стены — 35 м)., совокупные нагрузки от которого составляют 190 тонн. Здание возведено на суглинистой почве с сопротивлением 3.6 кг/см 2

  • S>1.2*190 000/1*3.6 = 63 333 см 2 = 6,33 м 3 ;

Исходя из расчетов мы получаем, что фундамент, несущей способности, которого будет достаточно под вышеуказанное здание, должен обладать опорной площадью в 6,33 м 2 . Если учитывать периметр фундамента в 35 м., ширина ленты должна составлять как минимум: 6,33/35 = 0,18 м.

Исходя из сопротивления грунта, несущая способность такого ленточного фундамента составит: 63 333 * 3,6 = 227,99 тонн.

На винтовых сваях

Расчет несущей способности фундамента на винтовых сваях выполняется на основе определения несущих характеристик одной сваи и умножения полученного результата на количество свай в фундаменте.

Для примера произведем расчеты с аналогичными исходными данными — нагрузки от здания 190 тонн, периметр стен — 35м, грунт — суглинок к сопротивлением 3,6 см/м 2 . В фундаменте будут использоваться винтовые сваи с диаметром ствола 133 мм.

Рис. 1.8: Схема работы винтовых свай в грунте

  • Определяем опорную площадь одной сваи 133 мм., диаметр лопастей у которой составляет 30 см, по формуле «R 2 *3.14» — 15*15*3,14 = 706.5 см 2 ;
  • Рассчитываем несущую способность сваи по силе сопротивления суглинка: 706,5*3,6 = 2.55 тонн;
  • Расчитываем общую несущую способность фундамента: 14*2,55 = 35,7 тонн.

Как вы видите, несущей способности винтовых свай не достаточно для возведения тяжелого кирпичного здания, нагрузка от которого составляет 190 тонн. На таких фундаментах могут возводиться лишь легкие здания из каркасных панелей либо дерева.

На железобетонных сваях

Железобетонные сваи, в отличие от винтовых, работаю в грунте не только своей опорной подошвой, но и боковыми стенками ствола, поэтому они обладают большей несущей способностью.

Расчет основания из ЖБ свай производится по формуле: P = 10Rh*F+u*l*f>P, где

  • Rh — сопротивление почвы под острием сваи;
  • F — поперечное сечение сваи (м 2 );
  • u — периметр поперечного сечения (м);
  • l — глубина погружения сваи;
  • f — сопротивление грунта боковым стенкам сваи.

Для примера произведем расчет несущей способности фундамента под вышеуказанный дом, состоящего из 14 ЖБ свай сечением 30*30 см, погруженных на глубину 9 м.

В первую очередь определяется сопротивление грунта под острием сваи, на глубине 9 м. с учетом характеристик суглинистой почвы:

Далее рассчитывается сопротивление грунта боковым стенкам ствола:

Определяем несущую способность сваи по приведенной в начале главы формуле:

у какого фундамента наивысшая несущая способность

Как можно увидеть по приведенным расчетам, несущая способность разных фундаментов кардинально отличается — основания из винтовых свай отличаются минимальными сроками обустройства, однако их надежности достаточно лишь для возведения легких домов из дерева.

Ленточные фундаменты более надежны, они подходят под строительство тяжелых кирпичных домов в нормальных грунтовых условиях, однако при наличии пучинистых грунтов, когда нужно заглублять фундаментную ленту ниже уровня промерзания почвы, их обустройство становится экономически невыгодным.

Фундаменты на железобетонных сваях — универсальный вариант. Они обладают максимальной несущей способностью и устойчивостью в любых типах грунтов. Если вы решили строить кирпичный дом и делаете упор на максимальной надежности и долговечности конструкции, такой фундамент будет лучшим решением.

Заказ испытаний свай и обследования фундаментов

Компания «Установка Свай» предлагает услуги по обследованию фундаментов и проведению испытаний железобетонных свай статическим и динамическим методом. Данные испытания, проводимые в полевых условиях, позволяют узнать фактическую несущую способность сваи, что дает возможность составить максимально точный проект фундамента.

Также мы выполняем работы по погружению железобетонных и винтовых свай. Мы готовы обустроить свайный фундамент под ключ , взяв на себя выполнение всего спектра работ — от поставки высококачественных свай до сдачи полноценного свайного поля.

Все работы мы выполняем быстро, качественно и не дорого. Звоните нам по контактным телефонам, либо воспользуйтесь формой «Отправить заявку», и мы предложим вам лучшие условия сотрудничества!

Полезные материалы

Особенности проектирования ЖБ фундаментов

Правильное проектирования фундамента на железобетонных сваях — основополагающее условие его надежности и долговечности.

Виды фундаментов по конструкции и способу изготовления

Классификация фундаментов включает несколько типов оснований, имеющих разную конструкцию и обустраиваемых по определённым технологиям.

Стоимость фундамента под дом 10 на 10

Возведение объекта, неизбежно сопряжено с обустройством фундамента. Наиболее популярны следующие типы оснований .

Сооружение и расчет оснований и фундаментов

1. Сооружение фундаментов

Основания сооружений должны проектироваться на основе:

  • результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;
  • данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундамент, и условия его эксплуатации;
  • технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т. п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями.

Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-95.

Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.

Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т. п.

В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, нужно предусматривать натурные измерения деформаций основания. Они также должны предусматриваться при использовании новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания.

Проектирование оснований включает обоснованный расчетом выбор:

  • типа основания (естественное или искусственное);
  • типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, буробетонные и др.);
  • мероприятий, проводимых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность сооружений.

Основания должны рассчитываться по двум группам предельных состояний:

первой — по несущей способности и второй — по деформациям.

Основания рассчитываются по деформациям во всех случаях. По несущей способности основания рассчитываются, если:

  • на основание передаются значительные горизонтальные нагрузки (подпорные стены), фундаменты распорных конструкций и т. п.), в том числе сейсмические;
  • сооружение расположено на откосе или вблизи откоса;
  • основание сложено медленно уплотняющимися водонасыщенными пылевато-глинистыми и биогенными грунтами;
  • основание сложено скальными грунтами.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует проверять несущую способность основания, учитывая нагрузки, действующие в процессе строительства.

Расчетная схема системы «сооружение — основание» или «фундамент — основание» должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т. д.) . Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:

  • наличие или возможность образования верховодки;
  • естественные сезонные и многолетние колебания уровня подземных вод;
  • возможное техногенное изменение уровня подземных вод;
  • степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.

Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов на срок 25 и 15 лет соответственно с учетом возможных естественных сезонных и многолетних колебаний этого уровня, а также степени потенциальной подтопляемости территории. Для зданий и сооружений III класса допускается не выполнять указанную оценку.

Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод проводится на основе данных многолетних режимных наблюдений по государственной стационарной сети с использованием результатов краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.

Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогеологических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.

Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. При необходимости для выполнения указанных исследований помимо изыскательской организации должны привлекаться специализированные проектные или научно-исследовательские институты.

Если при прогнозируемом уровне подземных вод возможны недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т. п., то в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:

  • гидроизоляция подземных конструкций;
  • мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т. п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т. д.);
  • мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);
  • устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т. д.

Выбор одного или комплекса указанных мероприятий должен проводиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т. п.

Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных конструкций или могут повысить коррозийную активность грунтов, то должны предусматриваться антикоррозийные мероприятия в соответствии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.

При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод и предусматривать мероприятия, предупреждающие прорыв подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.

2. Глубина заложения фундаментов

Глубина заложения фундаментов должна приниматься с учетом:

  • назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;
  • глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;
  • существующего и проектируемого рельефа застраиваемой территории;
  • инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);
  • гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения;
  • возможного размыва грунта у опор сооружений, возводимых в руслах рек (мостов, переходов трубопроводов и т. п.);
  • глубины сезонного промерзания.

Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле

где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;

d — величина, принимаемая равной, м, для:

  • суглинков и глин — 0,23;
  • супесей, песков мелких и пылеватых — 0,28;
  • песков гравелистых, крупных и средней крупности — 0,30;
  • крупнообломочных грунтов — 0,34.

Значение d для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле

где dfn — нормативная глубина промерзания;

kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл. 16; для наружных и внутренних фундаментов неотапливаемых сооружений — kh = 1,1, кроме районов с отрицательной среднегодовой температурой.

Расчетная глубина промерзания должна определяться теплотехническим расчетом и при использовании постоянной теплозащиты основания, а также

если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т. п.) .

Таблица 16. Коэффициент kh

Ссылка на основную публикацию
Adblock
detector